Fabrication of ZnS-Bi-TiO2 Composites and Investigation of Their Sunlight Photocatalytic Performance

نویسندگان

  • Xuewei Dong
  • Fan Zhang
  • Chuan Rong
  • Hongchao Ma
چکیده

The ZnS-Bi-TiO2 composites were prepared by the sol-gel method and were characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-visible diffuse reflectance spectroscopy (UV-Vis DRS). It is found that the doped Bi as Bi(4+)/Bi(3+) species existed in composites, and the introducing of ZnS enhanced further the light absorption ability of TiO2 in visible region and reduced the recombination of photogenerated electrons and holes. As compared to pure TiO2, the ZnS-Bi-TiO2 exhibited enhanced photodegradation efficiency under xenon lamp irradiation, and the kinetic constant of methyl orange removal with ZnS-Bi-Ti-0.005 (0.0141 min(-1)) was 3.9 times greater than that of pure TiO2 (0.0029 min(-1)), which could be attributed to the existence of Bi(4+)/Bi(3+) species, the ZnS/TiO2 heterostructure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visible-light photocatalytic activity of semiconductor composites supported by electrospun fiber

The preparation and photocatalysis of TiO2–ZnS/fluoropolymer fiber composites were investigated. The fluoropolymer nanofiber mats with carboxyl groups were prepared by electrospinning, and then titanium and zinc ions were introduced onto the fiber surfaces by the coordinating of carboxyl of fluoropolymer in solution. The TiO2–ZnS composites with diameters 15 nm to 1 lm were immobilized on the s...

متن کامل

Room Temperature Synthesis of N-doped Urchin-like Rutile TiO2 Nanostructure With Enhanced Photocatalytic Activity Under Sunlight

We report the synthesis of nitrogen-doped urchin-like rutile TiO2 nanostructure at room temperature without further heat treatment. The process was operated through hydrolysis of Ti(OC4H9)4 employing the direct amination of the product. The samples characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy and Brunaue...

متن کامل

Enhanced sunlight photocatalytic activity of Ag3PO4 decorated novel combustion synthesis derived TiO2 nanobelts for dye and bacterial degradation.

This study demonstrates the synthesis of TiO2 nanobelts using solution combustion derived TiO2 with enhanced photocatalytic activity for dye degradation and bacterial inactivation. Hydrothermal treatment of combustion synthesized TiO2 resulted in unique partially etched TiO2 nanobelts and Ag3PO4 was decorated using the co-precipitation method. The catalyst particles were characterized using X-r...

متن کامل

Self-assembled highly crystalline TiO2 mesostructures for sunlight-driven, pH-responsive photodegradation of dyes

The development of new strategies and photocatalytic materials for practical environmental solutions remains a great challenge, particularly due to the large energy demands associated with various remediation processes. In this paper, we report the fabrication of self-assembled ordered mesoporous TiO2 with highly crystalline anatase structures as well as high surface area, and characterize thei...

متن کامل

S, N Co-Doped Graphene Quantum Dot/TiO2 Composites for Efficient Photocatalytic Hydrogen Generation

S, N co-doped graphene quantum dots (S,N-GQDs) coupled with P25 (TiO2) (S,N-GQD/P25) have been prepared via simply hydrothermal method. The as-prepared S,N-GQD/P25 composites exhibited excellent photocatalytic hydrogen generation activities, with a significantly extended light absorption range and superior durability without loading any noble metal cocatalyst. The photocatalytic activity of thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014